<aside> 🔥

UNIT 3

</aside>


<aside> <img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />

Questions

<aside> <img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />

Recurrent Neural Networks

  1. What is a Recurrent Neural Network (RNN)? Explain its working mechanism.
  1. Differentiate between Feed-Forward Neural Networks and Recurrent Neural Networks.

Types of Recurrent Neural Networks

  1. Explain the types of Recurrent Neural Networks (RNNs) with suitable examples.

Feed-Forward Neural Networks vs Recurrent Neural Networks

  1. Compare Feed-Forward Neural Networks (FFNNs) and Recurrent Neural Networks (RNNs) in detail.

Long Short-Term Memory Networks (LSTM)

  1. Explain Long Short-Term Memory Networks (LSTMs) in detail with a suitable diagram.

Encoder-Decoder Architectures

  1. Explain encoder-decoder architectures and their applications.

Recursive Neural Networks (RvNNs)

  1. What are Recursive Neural Networks (RvNNs)? Discuss their working mechanism.
  1. Discuss the advantages and disadvantages of Recursive Neural Networks in natural language processing (NLP).

</aside>

</aside>

<aside> 🔥

UNIT 4

</aside>


<aside> <img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />

Questions

<aside> <img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />

1. Undercomplete Autoencoders


2. Regularized Autoencoders-Sparse Autoencoders


3. Denoising Autoencoders


4. Contractive Autoencoders


5. Applications of Autoencoders


</aside>

</aside>


<aside> 🔥

UNIT 5

</aside>


<aside> <img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />

Questions

<aside> <img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />

1. Greedy Layerwise Pre-training


2. Transfer Learning and Domain Adaptation


3. Distributed Representation


4. Variants of CNN: DenseNet


</aside>

</aside>


<aside> 🔥

</aside>


<aside> <img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />

</aside>

graph TD
    A["ALL THE BEST! 🌟"]:::special --> B["@HustlerX01"]:::username
    B --> C["You've Got This! 💫"]:::motivation
    C --> D["Stay Focused 🎯"]:::action
    C --> E["Stay Calm 🧘"]:::action
    C --> F["Stay Confident 💪"]:::action
    D --> G["Success Awaits! 🏆"]:::success
    E --> G
    F --> G

classDef special fill:#E3F2FD,stroke:#1976D2,stroke-width:3px,color:#0D47A1
classDef username fill:#E8F5E9,stroke:#388E3C,stroke-width:2px,color:#1B5E20
classDef motivation fill:#FFF3E0,stroke:#F57C00,stroke-width:2px,color:#E65100
classDef action fill:#F3E5F5,stroke:#7B1FA2,stroke-width:2px,color:#4A148C
classDef success fill:#FAFAFA,stroke:#424242,stroke-width:3px,color:#212121

%% Using a softer, more professional color palette
%% Improved contrast for better readability
%% Consistent color theme across nodes
%% Balanced stroke widths for visual harmony

Connect with me on Telegram: @HustlerX01 🚀