<aside>
🔥
UNIT 3
</aside>
<aside>
<img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />
Questions
<aside>
<img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />
Recurrent Neural Networks
- What is a Recurrent Neural Network (RNN)? Explain its working mechanism.
- Differentiate between Feed-Forward Neural Networks and Recurrent Neural Networks.
Types of Recurrent Neural Networks
- Explain the types of Recurrent Neural Networks (RNNs) with suitable examples.
Feed-Forward Neural Networks vs Recurrent Neural Networks
- Compare Feed-Forward Neural Networks (FFNNs) and Recurrent Neural Networks (RNNs) in detail.
Long Short-Term Memory Networks (LSTM)
- Explain Long Short-Term Memory Networks (LSTMs) in detail with a suitable diagram.
Encoder-Decoder Architectures
- Explain encoder-decoder architectures and their applications.
Recursive Neural Networks (RvNNs)
- What are Recursive Neural Networks (RvNNs)? Discuss their working mechanism.
- Discuss the advantages and disadvantages of Recursive Neural Networks in natural language processing (NLP).
</aside>
</aside>
<aside>
🔥
UNIT 4
</aside>
<aside>
<img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />
Questions
<aside>
<img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />
1. Undercomplete Autoencoders
- Q4 b) State and explain Undercomplete Autoencoders.
- Answer
2. Regularized Autoencoders-Sparse Autoencoders
- Q4 a) Explain Regularized Autoencoders-Sparse Autoencoders. [9]
3. Denoising Autoencoders
- Q3 b) Describe Denoising Autoencoders, Contractive Autoencoders. [9]
- Answer
- Q4 b) Explain Denoising Autoencoders with a suitable figure.
- Answer
4. Contractive Autoencoders
- Q3 b) Explain the concept of Contractive Autoencoder and its need. [8]
- Answer
5. Applications of Autoencoders
- Q3 a) Discuss different types of Applications of Autoencoders. [9]
- Answer
- Q4 a) State the applications of Autoencoders. Explain how the dimensionality reduction feature of autoencoder is useful in information retrieval tasks. [9]
- Answer
</aside>
</aside>
<aside>
🔥
UNIT 5
</aside>
<aside>
<img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />
Questions
<aside>
<img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />
1. Greedy Layerwise Pre-training
- Q5 a) Discuss Greedy Layerwise Pre-training methods. [9]
- Answer
- Q5 a) Why is the network called Greedy Layerwise Pretraining Network? [9]
- Answer
2. Transfer Learning and Domain Adaptation
- Q6 b) Explain Transfer Learning and Domain Adaptation. [9]
- Answer
- Q6 b) Justify when to use domain adaptation and when to use transfer learning. [9]
- Answer
3. Distributed Representation
- Q6 a) Explain distributed representation with example. [9]
- Answer
4. Variants of CNN: DenseNet
- Q5 b) Explain DenseNet in detail. [9]
- Answer
- Q6 a) Elaborate Variants of CNN in detail. [9]
- Answer
</aside>
</aside>
<aside>
🔥
</aside>
<aside>
<img src="/icons/server_gray.svg" alt="/icons/server_gray.svg" width="40px" />
</aside>
graph TD
A["ALL THE BEST! 🌟"]:::special --> B["@HustlerX01"]:::username
B --> C["You've Got This! 💫"]:::motivation
C --> D["Stay Focused 🎯"]:::action
C --> E["Stay Calm 🧘"]:::action
C --> F["Stay Confident 💪"]:::action
D --> G["Success Awaits! 🏆"]:::success
E --> G
F --> G
classDef special fill:#E3F2FD,stroke:#1976D2,stroke-width:3px,color:#0D47A1
classDef username fill:#E8F5E9,stroke:#388E3C,stroke-width:2px,color:#1B5E20
classDef motivation fill:#FFF3E0,stroke:#F57C00,stroke-width:2px,color:#E65100
classDef action fill:#F3E5F5,stroke:#7B1FA2,stroke-width:2px,color:#4A148C
classDef success fill:#FAFAFA,stroke:#424242,stroke-width:3px,color:#212121
%% Using a softer, more professional color palette
%% Improved contrast for better readability
%% Consistent color theme across nodes
%% Balanced stroke widths for visual harmony
Connect with me on Telegram: @HustlerX01 🚀